ICMST-Tohoku 2018
Oct. 23 - 26, 2018
Sendai, Japan
ICMST-Shenzhen 2016
Nov 1 - 4, 2016
Shenzhen, China
ICMST-Kobe 2014
Nov 2(Sun) - 5(Wed), 2014
Kobe, Japan
Nuclear Regulation Authority Outline of the New Safety Standards for Light Water Reactors for Electric Power Generation
For Public Comment
Outline of New Safety Standard (Design Basis)
For Public Comment
New Safety Standards (SA) Outline (Draft)
For Public Comment
Outline of New Safety Standard(Earthquake and Tsunami)(DRAFT)

Vol.10 No.2(Aug)
Vol.10 No.1(May)
Vol.9 No.4(Feb)
Vol.9 No.3(Nov)

< Other Issues


Occasional Topics
OTjapan Measures for Tsunami Striking Nuclear Power Station in Japan
Special Article: The Great Tohoku Earthquake (1)
OTjapan The Tragedy of “To Be” Principle in the Japanese Nuclear Industry
EJAMOT_CN3_Figure1_The_outside_view_of_CEFR OTChinaPlanning and Consideration on SFR R&D Activities in China
< All Occasional Topics

Featured Articles
EJAM7-3NT72 A New Mechanical Condition-based Maintenance Technology Using Instrumented Indentation Technique
EJAM7-3NT73 Survey robots for Fukushima Daiichi Nuclear Power Plant

(in English)


Vol.9 No.2previous AASP17 (125-126-127-128-129-130-131-132-133-134-135-136-137-138-139-140-141-142) NT85

Academic Articles
Regular Paper Vol.9 No.2 (2017) p.38 - p.43

A Solution of Atom Map Data Analysis for Atom Probe Tomography Training

Dongyue CHEN 1,*, Kenta MURAKAMI2, Kenji NISHIDA3, Zhengcao LI4,*, Naoto SEKIMURA1

1 The University of Tokyo, Dept. of Nuclear Engineering and Management, Japan
2 The University of Tokyo, Nuclear Professional School, School of Engineering, Japan
3 Central Research Institute of Electric Power Industry, Japan
4 Tsinghua University, School of Materials Science and Engineering, China

Atom probe tomography is a promising tool for future ageing management of nuclear power plants. For a wider application of atom probe technique in the future, a training program for university students and young researchers has been proposed, and a practice section has been designed to provide chances to experience the data analysis of atom probe. However, the available commercial software for the data analysis is expensive and lacks enough flexibility. In this work, a data analysis solution for atom probe with free codes and free software has been set up. The requirement of atom map visualization has been discussed, and the atom map data has been successfully visualized with the open-source software ParaView. A precipitate searching code has been developed based on the maximum separation method, which is the most popular method currently. The precipitate searching code consists of three steps: maximum separation step, envelope step and erosion step. The detailed algorithm of the code has been discussed, and the effects of tuning the precipitate searching parameters in the code have been demonstrated. With this set of tools, the training participants could get a vivid picture of the advantages and limitations of the atom probe technique.
Atom probe tomography, Training, Precipitate searching, Maximum separation method
Full Paper: PDF
Article Information
Article history:
Received 12 October 2016
Accepted 29 May 2017