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ABSTRACT 

This paper examines recent developments in the statistical analysis of Nondestructive Evaluation (NDE) data, 
and suggests improvements to conventional analysis.  This paper focuses on hit/miss or Bernoulli data analysis.  
POD evaluation is a conventional methodology used to quantify reliability of inspections in many industries.  
Hit/miss data is still commonly used and many developments in statistical analysis have occurred in the last few 
decades; thus, this paper focuses on hit/miss analysis only 
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1.  Introduction  
 
 Hit/miss analysis or Bernoulli data analysis to be precise continues to be the most prevalent 
method used to determine probability of detection (POD) in practice.  In general, this type of 
analysis requires advanced statistical methods.  Attempts to quantify NDE capability began in the 
1970’s with studies by United States National Aeronautics and Space 
Administration (NASA) and the United States Air Force (USAF) [1, 2].  The latter study is 
probably the largest study on the reliability of NDE techniques in history.  Initially, POD was 
analyzed using Binomial statistics.  This was inadequate because POD changes as a function of flaw 
size. The USAF and statisticians developed methods based on Logistic regression to analyze hit/miss 
data [3].  The fundamental functional form of the POD curve is shown in equation 1, where ‘a’ is the 
flaw size, μ is the 50% probability of detection flaw size, also known as a50, σ is a slope parameter, 
and Ф is the cumulative distribution function of the standard normal distribution.   
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The two models that were used were the log odds or logit model shown in equation 2 and the 
cumulative log normal or probit model shown in equation 3.  The logit and probit models have 
different tail behavior, and since tail behavior for large flaw sizes is of most interest, determining the 
best model is important.   
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Note that only the form of the function is cumulative and POD should not be interpreted as a 
cumulative distribution.  During the development of POD analysis methods in the 1980’s, the log 
odds model was more feasible for computational reasons.  The standard reference for many years 
was the seminal work by Berens in the American Society of Metals (ASM) Handbook [4].  Later, 
this work was codified into a US Department of Defense (DOD) handbook for POD studies, which 
was published in 1999 [5].  The major challenge in the development of POD thus far was accurate 
confidence bound calculations.  It needs to be emphasized that a POD curve without confidence 
bounds has little value. 
 
 Since 2000, several modifications have been made or suggested for POD analysis [5].  First, 
the confidence bounds for hit/miss data were deemed overly conservative because they were applied 
simultaneously to all the points on the POD curve.  The software developed by Berens [6] was 
changed to calculate the confidence bounds for each individual flaw size locally rather than to the 
entire POD curve [7].  Both of these confidence bound calculations were based on the so called 
Wald Statistic [8].  Later, the likelihood ratio method was suggested for more accurate confidence 
bound calculations on the model parameters estimates [9, 10].  This is a modern “Gold standard” 
statistical method that is now feasible to implement on a personal computer thanks to advances in 
computational statistics.  Recently, MIL-HDBK-1823 was revised to include these developments 
[11].  MIL-HDBK-1823A is considered the state-of-the-art guidance for conducting POD studies by 
the USAF and other industries that conduct POD studies [12].  There is also parallel work being 
done in medical statistics similar to NDE reliability [13].  The primary requirement for hit/miss data 
in MIL-HDBK-1823A is that POD is 0 as flaw size approaches 0, and 1 as flaw size approaches 
infinity.  An example of a data set that does not meet this requirement was shown in [14], and 
methods in a Bayesian framework will be introduced to handle such a data set. 
  
  
2.  Review of Current Methodologies 
 
2.1. Hit/Miss Analysis: Case Study and Terminology.   
 

To illustrate the different methods for analyzing NDE data, the data set in [4] will be used and is 
shown in Table 1.  This data set contains 35 observation opportunities with 13 hits and 22 misses.  
The flaws range from 0.200 mm to 6.990 mm.  The data was derived from an evaluation of a 
fluorescent penetrate inspection. In practice, the statistical methods presented here can be applied to 
any inspection data with binary responses.   

First, the commonly used terms are defined: 
 
a50 – estimate of flaw size for 50% POD, also equal to μ 
a90 – estimate of flaw size for 90% POD 
a90/95 – lower bound at 95% confidence for 90% POD 
 

a90/95 is a scalar quantity commonly used as a performance metric for comparison of NDE systems and 
risk calculations.  Note that confidence bounds refer to only the specific POD experiment, and to 
make inference on future capability of an inspection, prediction bounds should be considered. 
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Table 1 Hit/Miss Data Example from [4] 
 

 
Flaw size (mm) Response Flaw size (mm) Response 

0.2 0 2.18 1 
0.23 0 2.18 0 
0.25 0 2.21 0 
0.38 0 2.41 1 
0.46 0 2.49 0 
0.51 0 2.54 1 
0.58 0 2.64 0 
0.64 0 2.84 1 
0.99 0 2.97 1 
0.99 0 3.3 0 
1.02 0 4.09 0 
1.42 0 4.22 1 
1.63 1 4.42 1 
1.85 0 4.95 1 
1.98 1 5.59 1 
2.03 0 6.2 1 
2.06 0 6.99 1 
2.13 0   

 
2.2. Hit/Miss Analysis according to [5, 6, 9, 10] 
 

The results reported in [4] were calculated using the log odds model and the confidence bounds 
were calculated globally for the entire POD curve; thus the a90/95 number is very conservative.  
POD/SS software version 3 [6] was used to calculate the POD curve and confidence bounds using the 
Wald method for the set of data.  These results can be reproduced following the calculations in [7].  
The results are displayed in Figure 1.  The key quantities a50 (also μ), a90, and a90/95 are indicated on 
this plot.  
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Figure 1: Analysis of data from [4] with POD/SS [6]. 
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Next, the likelihood ratio method was used to determine POD.  Here, the probit model was used 
because it was determined that the probit model provided a better fit.  This calculation was done 
using software known as mh1823 software which is a library available for use with the ‘R’ 
programming language [15].  The POD curve with confidence bounds calculated using the 
likelihood ratio method is displayed in Figure 2.  The numerical values are reported later in the paper 
in Table 3. Visual inspection of the results reveals that both a50 and a90 are approximately the same as 
expected, but there is big discrepancy in the a90/95 value.  This discrepancy is a result of the Wald 
method using point estimates, and the likelihood ratio considering all flaw sizes simultaneously. 

 

 
Figure 2: Analysis of data in [4] with likelihood ratio method [10] 
 

3.  New Methodology 
 

3.1 Hit/Miss Analysis using Markovchain Monte Carlo Simulation  
 
 The two statistical methods used in the previous section are modern state-of-the-art methods 
in conventional statistics.  There are cases where the data does not suggest that the POD goes to 1 as 
the flaw size goes to infinity, and there is also the problem of false calls where the POD curve doesn’t 
go to 0 as the flaw size goes to 0. To address these issues, additional parameters must be incorporated 
in the model, but inference using conventional methods is difficult.  In addition, recent efforts in 
model-assisted POD have led to the consideration of Bayesian statistical methods to incorporate 
information from physics-based models and expert opinion. The advantages of going beyond 
conventional statistics to Bayesian statistics are twofold: 1) Markovchain Monte Carlo (MCMC) 
simulation allows more complicated POD models to be used because it facilitates parameter 
estimation and confidence bound computation, and 2) prior information from expert opinion and 
physics-based models can be incorporated in the POD study.    Recently, a new method for 
analyzing hit/miss data was proposed using MCMC simulation [16].  Details on the application of 
MCMC simulation for parameter estimation can be found in [17].  The mathematical form of Bayes’ 
rule is given by  
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where the data follows a model M, and θ is a set of parameters in the model. P(θ|D,M) literally reads 
as the probability of the parameters given the data, and it is commonly called the “posterior” 
distribution.  P(D|θ,M) literally reads as the probability of the data given the parameters, and is also 
known as the “likelihood”.  P(θ|M) is the “prior” distribution of the parameters, which represents 
prior information/expert knowledge of the model. P(D|M) is commonly called the “evidence” or 
“marginal likelihood” under the assumed model, which can be calculated by an integration.   In this 
work, no special prior information is used, but this framework has the flexibility to include prior 
information in future work. The parameters are estimated by sampling from the posterior distribution 
in Eq. (4) through MCMC simulation. The benefit of using this method is that the parameter estimates 
and confidence bounds for more complicated models can be computed more easily. Moreover, model 
selection can also be conducted to determine the best model for the data by checking the marginal 
likelihood which is a popular indicator of the “strength” of the assumed model.   The additional 
models that will be considered include 3 and 4-parameter models.  A 3-parameter model will have 
either a lower asymptote (α) or an upper asymptote (β), and a 4-parameter model will have both α and 
β.  The 4-parameter case is depicted in Figure 3. 
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Figure 3: POD curve with both a lower asymptote α and an upper asymptote β. 

 
 

3.2     Results of POD Analysis Using MCMC Computation 
 

The data in section 2 will now be analyzed using MCMC computation for the confidence 
bounds.  The 2-parameter logit and probit models are calculated first.  Next, 3-parameter models 
with a lower and upper asymptote are calculated for both logit and probit cases.  Finally 4-parameter 
models for both logit and probit cases are calculated.  A model selection technique commonly used 
in Bayesian Statistics is known as the Bayes’ factor.  The Bayes’ factor is the ratio of marginal 
likelihoods evaluated for different models.  The marginal likelihood and corresponding Bayes factors 
are displayed in Table 2.  The probit models have a slightly higher marginal likelihood compared to 
the logit models.  All Bayes’ factors for the analysis of Berens data are computed with the marginal 
likelihood for the 2-parameter probit model in the numerator and the alternative model in the 
denominator.  The 2-parameter probit model shown in Figure 4 is the best fit according to the Bayes’ 
factor.  It should be noted, that this isn’t overwhelming evidence as the Bayes factor of the 
2-parameter probit model vs. the 2-parameter logit model is not large, and caution should be taken 
when drawing conclusions about Bernoulli data for small sample sizes such as this one.  Table 3 
shows the a50, a90, and a90/95 values for each of the models. 
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Table 2: Bayes Factor Results of Analysis of Berens Data from [4]  
 
 

 Marginal Likelihood Bayes factor 
2 parameter Logit 2.78E-08 2.109 
2 parameter Probit 5.86E-08 1.000 

3 parameter lower bound Logit 3.92E-09 14.976 
3 parameter lower bound Probit 1.39E-09 42.339 
3 parameter upper bound Logit 7.09E-09 8.269 
3 parameter upper bound Probit 3.27E-09 17.914 

4 parameter Logit 4.49E-10 130.735 
4 parameter Probit 3.14E-09 18.692 

 
Table 3: Performance Metrics Results of Analysis of Berens Data from [4] 
 
 

 a50 a90 a90/95

2 parameter Logit 2.611 5.333 10.136 
2 parameter Probit 2.611 5.353 10.075 

3 parameter lower bound Logit 3.072 5.253 10.355 
3 parameter lower bound Probit 3.352 5.153 10.415 
3 parameter upper bound Logit 2.191 - - 
3 parameter upper bound Probit 1.951 - - 

4 parameter Logit 2.473 - - 
4 parameter Probit 2.429 - - 
Berens ASM result 2.620 5.340 21.600 

PODSS[6] 2.610 5.252 8.776 
MH 1823 software Logit [15] 2.613 5.354 18.550 
MH 1823 software Probit [15] 2.610 5.252 17.020 

 
 
Table 4: Asymptote Results of Analysis of Berens Data from [4] 
 
 

 Lower asymptote Upper asymptote 
3 parameter lower bound Logit 0.163 - 
3 parameter lower bound Probit 0.189 - 
3 parameter upper bound Logit - 0.612 
3 parameter upper bound Probit - 0.577 

4 parameter Logit 0.116 0.662 
4 parameter Probit 0.113 0.623 
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Figure 4: 2-parameter probit model with MCMC confidence bounds for Berens data [4]. 
 
4.  A Difficult Data Set 
 
4.1 Second example data set 
 
 One of the data sets referred to in [14] is called A6003H, as shown in Figure 5, which has 184 
observations [18].  Visual inspection of the data reveals that there are many misses for larger flaw 
sizes.  Since the 2-parameter models force the POD curve to go to 1 for large flaw sizes, and 0 for 
small flaw sizes, it is not recommended to use conventional methods suggested in [11].  A new 
parameter that represents an upper asymptote will need to be added to the POD model.  It may also 
be necessary to add a lower asymptote that will provide some measures of false calls. 
 The data was analyzed with 11 different models.  These include the Wald bounds [6], the 
likelihood ratio method for both logit and probit models [15], and logit and probit models for 
2-parameter, 3-parameter with lower bound, 3-parameter with upper bound, and 4-parameter models 
that have both lower and upper bounds.  The results of the analysis are listed in Table 5, 6 and 7. The 
marginal likelihood was largest for the 3-parameter probit model with an upper bound which is shown 
in Figure 6.  In fact, the evidence for an upper bound is overwhelming.  The Bayes’ factor for 
comparing the 3-parameter probit model with the 2-parameter probit model is 2.073 E+07 which 
indicates that an upper asymptote for the POD curve is absolutely necessary.  The upper asymptote is 
0.921, but the lower confidence bound never reaches 0.9 so there is no a90/95 estimate for this data set.  
The author recommends evaluating the quality of fit for multiple models to avoid drawing the wrong 
conclusions for a POD study.  The 4-parameter model is also shown in Figure 7 since it is also an 
acceptable model.   
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Figure 5: A6003H data set [16]. 
 
Table 5: Bayes Factor Results from Analysis of A6003H data set. 
 
 

Model Marginal Likelihood Bayes Factor 
2 parameter Logit 1.039E-31 6.821E+04 

2 parameter Probit 3.418E-34 2.073E+07 

3 parameter lower bound Logit 7.304E-33 9.703E+05 

3 parameter lower bound Probit 3.680E-34 1.926E+07 

3 parameter upper bound Logit 3.734E-28 1.898E+01 

3 parameter upper bound Probit 7.087E-27 1.000E+00 

4 parameter Logit 7.944E-28 8.921E+00 

4 parameter Probit 3.571E-28 1.985E+01 
 
Table 6: Performance Metrics Results from Analysis of A6003H data set. 
 
 

 a50 (mm) a90 (mm) a90/95 (mm) 

2 parameter Logit (MCMC) 2.042 3.403 3.953 
2 parameter Probit (MCMC) 1.980 3.815 4.451 

3 parameter lower bound Logit (MCMC) 2.051 3.452 3.992 
3 parameter lower bound Probit (MCMC) 2.031 3.832 4.432 
3 parameter upper bound Logit (MCMC) 2.051 - - 
3 parameter upper bound Probit (MCMC) 2.051 - - 

4 parameter Logit (MCMC) 2.083 - - 
4 parameter Probit (MCMC) 2.091 - - 

PODSS[6] 2.032 3.797 4.340 
MH 1823 software Logit [15] 2.038 3.439 4.157 
MH 1823 software Probit [15] 2.032 3.798 4.586 
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Table 7: Asymptote Results from Analysis of A6003H data set. 
 
 

Model Lower Asymptote Upper Asymptote 
3 parameter lower bound Logit (MCMC) 0.030 - 

3 parameter lower bound Probit (MCMC) 0.034 - 

3 parameter upper bound Logit (MCMC) - 0.922 

3 parameter upper bound Probit (MCMC) - 0.921 

4 parameter Logit (MCMC) 0.045 0.921 

4 parameter Probit (MCMC) 0.044 0.921 

 

 
 
Figure 6: 3-parameter probit model with upper asymptote for A6003H data set. 
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Figure 7: 4-parameter probit model with lower and upper asymptotes for A6003H data set. 
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5.  Conclusion 

 
The historical development of POD evaluation was summarized in this paper.  Improvements to 

standard guidance were proposed.  In particular, MCMC computation to facilitate parameter 
estimation and confidence bound calculations is suggested.  POD can definitely be used to compare 
the performance of NDE systems.  Caution should be taken when using POD for risk management of 
assets.  Some statisticians have recommended sample sizes over 300 for hit/miss analysis.  The 
sample size requirement is an open issue, but considering more models may ultimately reduce the size 
necessary.  For the first data set considered, the sample size was only 35, but the 3 and 4 parameter 
model analysis did not suggest any problems.  The second data set was large, but the models with 3 
and 4 parameters showed that the a90/95 estimate does not exist.  Analyzing the A6003H data set with 
only a 2-parameter model will lead to a fictitious a90/95 value.  The author recommends consulting 
with a professional statistician for POD studies. 
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