Sustainability of compressive residual stress by stress improvement processes

Satoru NISHIKAWA¹,²* Shigeru OKITA² and Atsunori YAMAGUCHI³

¹Japan Power Engineering and Inspection Corporation, 14-1 Bentencho, Tsurumi-ku Yokohama, 230-0044, Japan
²Japan Power Engineering and Inspection Corporation, 14-1 Bentencho, Tsurumi-ku Yokohama, 230-0044, Japan (Present address: The Japan Welding Technology Center)
³Japan Power Engineering and Inspection Corporation, 14-1 Bentencho, Tsurumi-ku Yokohama, 230-0044, Japan (Present address: Japan Society of Maintenology)

ABSTRACT
Stress improvement processes are countermeasures against stress corrosion cracking in nuclear power plant components. It is necessary to confirm whether a compressive residual stress induced by stress improvement processes can be sustained under operation environment. In order to evaluate stability of the compressive residual stress in 60-year operating conditions, the 0.07% cyclic strains of 200 times at 593 K were applied to the welded specimens, then a thermal aging treatment for 1.66×10^6 s at 673 K was carried out. As the result, it was confirmed that the compressive residual stresses were sustained on both surfaces of the dissimilar welds of austenitic stainless steel (SUS316L) and nickel base alloy (NCF600 and alloy182) processed by laser peening (LP), water jet peening (WJP), ultrasonic shot peening (USP), shot peening (SP) and polishing under 60-year operating conditions.

KEYWORDS
Stress improvement processes, Sustainability of the compressive residual stress, Austenitic stainless steel, Nickel base alloy, LP, WJP, USP, SP, Polishing

ARTICLE INFORMATION
Article history:
Received 15 January 2015
Accepted 19 August 2015

1. Introduction

One of the methods to prevent components of a nuclear power plant from stress corrosion cracking (SCC) is a stress improvement process such as peening techniques (laser peening, water jet peening, etc.) and polishing for applying compressive residual stress to a region where SCC is supposed to occur. However, when a compressive residual stress is applied for prevention of SCC, it is necessary to confirm persistence of the compressive residual stress upon the consideration of aged deterioration of the component.

Until now, many studies have been conducted to investigate persistence of a compressive residual stress. In these studies, the relaxation of a compressive residual stress were examined on the following conditions:

1. Thermal relaxation by thermal aging treatment[1]–[4]
2. Stress (strain) loading[1],[5]–[8]
3. Thermal relaxation by thermal aging treatment with stress (strain) loading[3],[5],[9]
4. Thermal relaxation by thermal aging treatment in the presence of welding residual stress[3],[4],[7]
5. Stress (strain) loading in the presence of welding residual stress[10],[11]
6. Thermal relaxation by thermal aging treatment in welding residual stress with stress (strain) loading[5],[12]

The examined materials are SUS304(Type304), SUS316L(Type316L), NCF600(UNS N06600),

*Corresponding author, E-mail: nishikawa-satoru@japeic.or.jp
alloy132 and alloy182.

From the results of the studies, it was confirmed that a compressive residual stress is retained on each of the conditions ①–⑥, but a consensus opinion about persistence of a compressive residual stress has not been reached so far because the test condition and the specimen type were different for each stress improvement process.

In this study, we investigated persistence of a compressive residual stress by performing stress relaxation tests under the same condition based on the environment of a nuclear power plant using specimens of the same size as the specimens were treated with different stress improvement processes; laser peening (LP), water jet peening (WJP), ultrasonic shot peening (USP), shot peening (SP) and polishing.

2. Experimental procedure

2.1. Preparation of evaluated specimens

Table 1 shows the chemical composition of each material prepared for making the dissimilar welded joints used in stress relaxation tests as the specimens. Figure 1 shows the schematic of these dissimilar welded joints. The two base metals SUS316L and NCF600 were joined by shielded metal arc welding with the weld metal Alloy182 to form the dissimilar welded joints of 15 mm in thickness, 200 mm in width and 250 mm in length. When the welding was performed, the electrode was connected to the positive terminal of a direct current power source. The current was set to 110–140 A. The welding speed was set to 2.0–4.1 mm/s. The weld was made in five layers with nine passes. The electrode was moved carefully not to form electrode stop/start points around the center of the specimens, where residual stress would be evaluated. The surface of the welded joints was made flat by mechanically grinding the weld reinforcement, and the plate thickness was made 12.1 mm by mechanically grinding the surface of the initial layer side. The evaluated specimens (12.1 mm in thickness, 45 mm in width and 180 mm in length) were cut out from the welded joints in such a way that the weld line was located along the center line in the longitudinal direction of the specimens. The final layer side of the specimens was electrolytically polished by more than 0.1 mm in order to remove the machined layer of the surface. The stress improvement processes were performed on a 40 mm×45 mm area of the electrolytically polished surface of the specimens as shown in Figure 2. The stress improvement processes performed were LP, WJP, USP and polishing. Table 2 shows the conditions of LP, WJP, USP and SP. In the following sections, the effects of these stress improvement processes on the persistence of the compressive residual stress are described.

<table>
<thead>
<tr>
<th>Material</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cu</th>
<th>Cr</th>
<th>Fe</th>
<th>Mo</th>
<th>Nb+Ta</th>
<th>Ti</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUS316L</td>
<td>0.015</td>
<td>0.68</td>
<td>1.21</td>
<td>0.035</td>
<td>0.003</td>
<td>12.24</td>
<td>–</td>
<td>17.41</td>
<td>Bal.</td>
<td>2.08</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NCF600</td>
<td>0.08</td>
<td>0.23</td>
<td>0.25</td>
<td>0.008</td>
<td>0.001</td>
<td>73.54</td>
<td>0.07</td>
<td>16.77</td>
<td>9.05</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alloy182</td>
<td>0.058</td>
<td>0.76</td>
<td>7.38</td>
<td>0.007</td>
<td>0.004</td>
<td>68.3</td>
<td>0.03</td>
<td>14.30</td>
<td>7.08</td>
<td>1.52</td>
<td>0.37</td>
<td><0.50</td>
<td>–</td>
</tr>
</tbody>
</table>

Figure 1 Schematic of a dissimilar welded joint from which specimens for the sustainability evaluation of compressive residual stress were cut
2.2. Strain loading

Strain was applied multiple times to the specimens in order to evaluate the influence of the stress variation due to the plant start/stop operations. The yield stress of SUS316L, NCF600 and alloy182 decreases with the increasing temperature[12]. Therefore, the loading with the operating temperature and the stress occurred at the start-up of a nuclear power plant should be severe condition for the relaxation of the compressive stress. Because applying a 0.07% strain at the PWR operating temperature 593 K provides a stress equal to or more than the stress arising in the start-up of a plant, a 0.07% strain was cyclically applied to the longitudinal direction of the specimens at 593 K. The strain rate was set to 6.67×10^{-5} s\(^{-1}\). The strain profile was chopping wave. The number of strain loading of specimens were 200 times considered as the cycle number more than the design number assumed 60 years operation. In addition, operating temperature in the BWR power plant is at 563 K and the strain equivalent to the above is caused. It can be proposed that the compressive residual stress is sustained under the BWR environment, if the compressive residual stress is sustained with these conditions.

2.3. Thermal aging treatment

In addition to stress loading, thermal relaxation by a long term aged at operating temperature is considered as a factor of sustainability of compressive stress by a stress improvement process during plant operating. To examine the sustainability of the compressive residual stress considering both
operating temperature and stress loading, specimens were subjected to 200 cycles of strain and subsequent thermal aging treatment simulating the actual long-term operation. Assuming that PWRs are operated for 60 years at an operating rate of 100%, their components are subjected to a thermal history of 593 K for 1.89×10⁹ s. Using a Larson-Miller parameter, this condition is converted to an acceleration condition of 673 K for 1.66×10⁶ s, which is used in the thermal aging treatment in this study. The operating temperature of BWRs is 563 K, which is lower than that of PWRs. Therefore, if the compressive residual stress is sustained under the above acceleration condition, it will be sustained under the operating conditions of BWRs.

2.4. Residual stress measurement

Specimens were subjected to 1, 2, 5, 10, 50, or 200 cycles of strain and subsequent thermal aging treatment. The residual stress of thus-obtained specimens was measured by X-ray diffraction. Table 3 summarizes the conditions for the measurement of residual stress by the 2θ–sin²φ method. The residual stress was measured at one point on each of SUS316L, NCF600, and alloy 182; however, measurement was carried out twice at the same point on alloy 182 in consideration of the variability of measured results. Figure 3 shows the measurement points of residual stress. The surface residual stress was measured at a position 2 mm from the fusion line in the heat-affected zone of SUS316L and NCF600 and at the center of alloy 182. According to the results obtained by Masaki, the residual stress changes negligibly in the direction perpendicular to that of stress loading and is relaxed in the direction of stress loading. Therefore, the residual stress in the longitudinal direction of specimens was measured in this study. In addition, the surface of the specimens obtained after 200 cycles of strain and subsequent thermal aging treatment was subjected to electrolytic polishing, and the residual stress at a depth of 10–200 μm was measured to evaluate the sustainability of the compressive residual stress inside the specimens. For specimens subjected to stress improvement processes other than polishing (i.e., LP, WJP, USP, and SP), the residual stress was measured at depths of 100 and 200 μm for SUS316L and NCF600, respectively. For specimens subjected to polishing, the residual stress was measured at a depth of 10 μm for both SUS316L and NCF600 because polishing affects the compressive residual stress up to a depth of 50 μm. As shown in Figure 3, the measurement point of the residual stress for the specimens after the thermal aging treatment was located symmetrical to those for the specimens obtained after 200 cycles of strain application because a concave was formed on the surfaces of SUS316L and NCF600 by electrolytic polishing.

<table>
<thead>
<tr>
<th>Condition</th>
<th>SUS316L</th>
<th>NCF600</th>
<th>Alloy182</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic X-ray</td>
<td>Cr-Kβ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube voltage/tube current</td>
<td>40 kV/30 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrolytic polishing area</td>
<td>φ3 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collimator area</td>
<td>φ2 mm (Without WJP and LP)</td>
<td>φ2 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>φ4 mm (WJP and LP)</td>
<td></td>
</tr>
<tr>
<td>Diffraction plane</td>
<td>311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffraction angle (2θ)</td>
<td>148.5°</td>
<td>153.6°</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Schematic of measurement point of residual stress by X-ray diffraction

○: Measurement point of residual stress until 200 cycles of 0.07% strain
●: Measurement point of residual stress after thermal aging treatment
3. Results and discussion

3.1. Sustainability of surface residual stress of SUS316L and NCF600

Figure 4 shows the surface residual stress after 200 cycles of strain application and subsequent thermal aging treatment at measurement positions 2 mm from the fusion line on SUS316L and NCF600:

![Graphs showing residual stress over strain cycles for SUS316L and NCF600](image)

- (a) LP
- (b) WJP
- (c) USP
- (d) SP
- (e) polishing

Figure 4 Effect of 200 cycles of 0.07% strain at 593 K and subsequent thermal aging treatment for 1.66×10^6 s at 673 K on surface compressive residual stress in SUS316L and NCF600: (a) LP, (b) WJP, (c) USP, (d) SP, and (e) polishing.
subjected to each stress improvement process. Although the surface residual stress was tensile owing to welding, it became compressive as a result of the stress improvement processes. The compressive residual stress was sustained on the surfaces of SUS316L and NCF600 subjected to all five stress improvement processes after 200 cycles of 0.07% strain application at 593 K and subsequent thermal aging treatment for 1.66×10^6 s at 673 K. The compressive residual stress of many specimens was significantly relaxed after the first cycle of strain application and remained almost the same up to 200 cycles of strain application, although the tendency of relaxation differed depending on the stress improvement process used and the material. From this result, it was found that the compressive residual stress was significantly relaxed owing to the redistribution of stress resulting from the temperature increase and stress loading in the first cycle of strain application and that the change in the compressive residual stress was negligible upon subsequent stress loading.

3.2. Sustainability of surface residual stress of alloy182

Figure 5 shows the surface residual stress after 200 cycles of stress application and subsequent thermal aging treatment at the center of alloy182 subjected to each stress improvement processes. The surface residual stress became compressive after any stress improvement process. The compressive residual stress was sustained on the surface of alloy182 after 200 cycles of 0.07% strain application at 593 K and subsequent thermal aging treatment for 1.66×10^6 s at 673 K. Although the compressive residual stress was relaxed up to five cycles of strain application in the specimens subjected to WJP, it was approximately −500 MPa after ten cycles of strain application. The reason behind the significant change in the compressive residual stress of the specimens subjected to WJP compared with those subjected to other stress improvement processes is considered to be a large measurement error. The crystal grains in alloy182 are larger than those in the base material and crystals solidify in the <100> direction. Thus, the number of crystal grains included in the X-ray irradiation region decreases, so that accuracy of X-ray stress measurement decreased. Therefore, in the specimens subjected to WJP with a small area of surface processing, large crystal grains remain, leading to a large measurement error and the large change in the compressive residual stress compared with specimens subjected to other stress improvement processes. In the specimens subjected to USP and SP with an increased area of surface processing, the large crystal grains of alloy182 are considered to be downsized, leading to an increased number of crystal grains in the X-ray irradiation region and a high measurement accuracy of residual stress compared with that of specimens subjected to WJP.

3.3 Sustainability of the compressive residual stress inside the specimen

Figure 6 shows the result of the residual stress measurement in the depth of 10–200 μm from the surface of SUS316L and NCF600 at 2 mm from the fusion line. The compressive residual stresses were sustained in the specimens after 200 cycles of 0.07% strain application at 593 K and subsequent thermal aging treatment for 1.66×10^6 s at 673 K. For the specimens subjected to stress improvement processes other than polishing (i.e., LP, WJP, USP, and SP), the compressive residual stresses were sustained in SUS316L at a depth of 100 μm and in NCF600 at a depth of 200 μm. For the specimen subjected to polishing, the compressive residual stress was sustained in both SUS316L and NCF600 in the depth of 10 μm.

From the above findings, the compressive residual stress is sustained in welded specimens comprising SUS316L, NCF600, and alloy 182 subjected to LP, WJP, USP, SP, and polishing under the conditions of 60 years operating of a nuclear power plant.
Figure 5 Effect of 200 cycles of 0.07% strain at 593 K and subsequent the thermal aging treatment for 1.66×10^6 s at 673 K on surface compressive residual stress in alloy182: (a) LP, (b) WJP, (c) USP, (d) SP, and (e) polishing.
Figure 6 Effect of 200 cycles of 0.07% strain at 593 K and subsequent thermal aging treatment for 1.66×10^6 s at 673 K on compressive residual stress in depth point: (a) LP, (b) WJP, (c) USP, (d) SP, and (e) polishing.
4. Conclusions

In this study, the sustainability of the compressive residual stresses in welded specimens subjected to stress improvement processes (i.e., LP, WJP, USP, SP, and polishing) to prevent components of a nuclear power plant from SCCs was examined considering 60-year operation of actual reactors. The obtained results are the following:

1) The compressive residual stresses were sustained on the surface of welded specimens comprising SUS316L, NCF600, and alloy 182 subjected to stress improvement processes after 200 cycles of 0.07% strain application at 593 K and subsequent the thermal aging treatment for 1.66×10^6 s at 673 K.

2) For specimens subjected to LP, WJP, USP, and SP, the compressive residual stresses were sustained in SUS316L at a depth of 100 μm and in NCF600 at a depth of 200 μm after 200 cycles of 0.07% strain application at 593 K and subsequent the thermal aging treatment for 1.66×10^6 s at 673 K.

3) For welded specimens subjected to polishing, the compressive residual stresses were sustained in both SUS316L and NCF600 at a depth of 10 μm after 200 cycles of 0.07% strain application at 593 K and subsequent the thermal aging treatment for 1.66×10^6 s at 673 K.

Acknowledgement

This study is a part of joint research results by ten electric power corporations (The Kansai Electric Power Company, Hokkaido Electric Power Co., Inc., Tohoku Electric Power Co., Inc., Chubu Electric Power Co., Inc., Hokuriku Electric Power Co., Inc., Chugoku Electric Power Co., Inc., The Japan Atomic Electric Power Co., Inc. and Electric Power Development Co., Inc.) and three plant manufacturing corporations (Toshiba Corporation, Hitachi-GE Nuclear Energy, Ltd. and Mitsubishi Heavy Industries, Ltd.). Discussion of these persons concerned is thanked heartily.

References

